The spectrum of Completely Positive Entropy Actions of Countable Amenable Groups

نویسنده

  • A. H. Dooley
چکیده

We prove that an ergodic free action of a countable discrete amenable group with completely positive entropy has a countable Lebesgue spectrum. Our approach is based on the Rudolph-Weiss result on the equality of conditional entropies for actions of countable amenable groups with the same orbits. Relative completely positive entropy actions are also considered. An application to the entropic properties of Gaussian actions of countable discrete abelian groups is given.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homoclinic Groups, Ie Groups, and Expansive Algebraic Actions

We give algebraic characterizations for expansiveness of algebraic actions of countable groups. The notion of p-expansiveness is introduced for algebraic actions, and we show that for countable amenable groups, a finitely presented algebraic action is 1-expansive exactly when it has finite entropy. We also study the local entropy theory for actions of countable amenable groups on compact groups...

متن کامل

Homoclinic Group, Ie Group, and Expansive Algebraic Actions

We give algebraic characterizations for expansiveness of algebraic actions of countable groups. The notion of p-expansiveness is introduced for algebraic actions, and we show that for countable amenable groups, a finitely presented algebraic action is 1-expansive exactly when it has finite entropy. We also study the local entropy theory for actions of countable amenable groups on compact groups...

متن کامل

Spectral and Mixing Properties of Actions of Amenable Groups

We generalize two theorems about K-automorphisms from Z to all amenable groups with good entropy theory (this class includes all unimodular amenable groups which are not an increasing union of compact subgroups). The first theorem is that such actions are uniformly mixing; the second is that their spectrum is Lebesgue with countable multiplicity. For the proof we will develop an entropy theory ...

متن کامل

Entropy and mixing for amenable group actions

For Γ a countable amenable group consider those actions of Γ as measurepreserving transformations of a standard probability space, written as {Tγ}γ∈Γ acting on (X,F , μ). We say {Tγ}γ∈Γ has completely positive entropy (or simply cpe for short) if for any finite and nontrivial partition P of X the entropy h(T, P ) is not zero. Our goal is to demonstrate what is well known for actions of Z and ev...

متن کامل

Krieger’s Finite Generator Theorem for Actions of Countable Groups Ii

We continue the study of Rokhlin entropy, an isomorphism invariant for p.m.p. actions of countable groups introduced in the previous paper. We prove that every free ergodic action with finite Rokhlin entropy admits generating partitions which are almost Bernoulli, strengthening the theorem of Abért–Weiss that all free actions weakly contain Bernoulli shifts. We then use this result to study the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001